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Abstract

Keisler–Shelah isomorphism theorem states that two models
are elementarily equivalent if and only if their ultrapowers with
respect to some ultrafilter over some set are isomorphic.

Especially, Keisler’s theorem states that under CH, an
ultrafilter over ω witnesses the above statement if the
languages are countable and the cardinalities of the structures
are ≤ c.

We discuss relations between Keisler’s theorem and cardinal
invariants.
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Notations

• c := 2ℵ0 .

• N denotes the null ideal.

• M denotes the meager ideal.
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Review of saturability

Let L be a (first-order) language and A be an L-structure.
Let p be a set of L(A)-formulas with one fixed free variable x .
We say p is finitely satisfiable if for every finite subset Σ of
p there exists x ∈ A that satisfies all formulas in Σ. For
x ∈ A, we say x realizes p if x satisfies all formulas in p.

For a cardinal κ, we say A is κ-saturated if for every finitely
satisfiable set p of L(A)-formulas with the number of
parameters occuring in p being < κ, there is an element of A
that realizes p.
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Definitions of KT and SAT

Let κ be a cardinal.

We say KT(κ) holds if for every countable language L and
L-structures A,B of size ≤ κ with A ≡ B, there exists an
ultrafilter U over ω such that Aω/U ' Bω/U .

We say SAT(κ) holds if there exists an ultrafilter U over ω
such that for every language L and every sequence of
L-structures (Ai)i∈ω with each Ai of size ≤ κ,

∏
i∈ω Ai/U is

finite or c-saturated.
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Known results

We say KT(κ) holds if for every countable language L and L-structures A,B of size
≤ κ with A ≡ B, there exists an ultrafilter U over ω such that Aω/U ≃ Bω/U.

We say SAT(κ) holds if there exists an ultrafilter U over ω such that for every
language L and every sequence of L-structures (Ai )i∈ω with each Ai of size ≤ κ,∏

i∈ω Ai/U is finite or c-saturated.

1 SAT(κ) implies KT(κ) for every κ.

2 (Keisler, 1961) CH implies SAT(c).

3 (Ellentuck–Rucker, 1972) MA implies SAT(ℵ0).

4 (Shelah, 1992) KT(ℵ0) implies v∀ ≤ d.

5 (Golshani–Shelah, 2021) ¬KT(ℵ2). In particular, CH iff
KT(c).

6 (Golshani–Shelah, 2021) cov(M) = c ∧ cf(c) = ℵ1

implies KT(ℵ1).

7 (Golshani–Shelah, 2021) In the Cohen model, KT(ℵ1)
holds.
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Diagram of implications

We say KT(κ) holds if for every countable language L and L-structures A,B of size
≤ κ with A ≡ B, there exists an ultrafilter U over ω such that Aω/U ≃ Bω/U.

We say SAT(κ) holds if there exists an ultrafilter U over ω such that for every
language L and every sequence of L-structures (Ai )i∈ω with each Ai of size ≤ κ,∏

i∈ω Ai/U is finite or c-saturated.

Thick arrows indicate our results.

CH

SAT(c)

KT(c)

SAT(ℵ1)

KT(ℵ1)

SAT(ℵ0)

KT(ℵ0)

MA

b = ℵ1 cov(N ) ≤ d

cov(M) = c ∧ 2<c = c

cov(M) = c
cov(M) = c
∧ cf(c) = ℵ1
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¬KT(ℵ2)

• Toward a contradiction, assume KT(ℵ2).

• Define a language L by L = {<} and put A = (Q, <),
B = (Q+ (ω2 + 1)×Q≥0, <B). Here <B is defined by
the lexicographical order.

• We have |A| = ℵ0, |B| = ℵ2.

• A,B are both dense linear ordered sets. So by
completeness of DLO, A and B are elementarily
equivalent.

• Then by KT(ℵ2), we can take U such that
Bω/U ' Aω/U .

• Put A∗ = Aω/U ,B∗ = Bω/U .
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¬KT(ℵ2)

The idea of proof is that Q is “homogeneous” and B is
“rugged” and these properties are inherited by their
ultrapowers.
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¬KT(ℵ2)

• Take a, b ∈ B such that cf(Ba) = ω1, cf(Bb) = ω2. Here

Bc = {d ∈ B : d <B c}.

• Put a∗ = [〈a, a, a, . . . 〉], b∗ = [〈b, b, b, . . . 〉] ∈ B∗.
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¬KT(ℵ2)

Lemma
cf((B∗)a∗) = ω1, cf((B∗)b∗) = ω2.

∵ By cf(Ba) = ω1, take an increasing cofinal sequence
〈ai : i < ω1〉. Then 〈a∗i : i < ω1〉, where
a∗i = [〈ai , ai , ai , . . . 〉]U , is a cofinal sequence of (B∗)a∗ (by
regularity of ω1). Thus cf((B∗)a∗) = ω1. The proof for
cf((B∗)b∗) = ω2 is similar. //

a

...

ω1
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¬KT(ℵ2)

Lemma
There is a function F : Q3 → Q such that for any c , d ∈ Q,
the function x 7→ F (x , c , d) is an automorphism on (Q, <)
that sends c to d .

∵ F (x , y , z) = x − y + z suffices. //

• Now consider the function F∗ from (A∗)3 to A∗ induced
by F . Then we have:

(∗) F∗ : (A∗)3 → A∗ satisfies for any c , d ∈ A∗,

x 7→ F∗(x , c , d) is an automorphism on A∗

that sends c to d .

• Therefore in A∗, for every two points c , d , we have
cf((A∗)c) = cf((A∗)d).

• So A∗ and B∗ are not isomorphic.
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KT(ℵ1) implies b = ℵ1

• Assume KT(ℵ1).

• Define a language L by L = {<} and put A = (Q, <),
B = (Q+ (ω1 + 1)×Q≥0, <B).

• Then by KT(ℵ1), we can take U such that
Bω/U ' Aω/U .

• Put A∗ = Aω/U ,B∗ = Bω/U .
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KT(ℵ1) implies b = ℵ1

• By the same reason as in the proof of ¬KT (ℵ2), We have
the following observation:

A point with cofinality ω1 remains to have cofinality ω1 in
the ultrapower.

• On the other hand, a point with cofinality ω increases its
cofinality in the ultrapower to cf(ωω/U , <U). We can see
this by mapping a sequence rapidly converging to the
point into rapidly increasing function in ωω.

• cf(ωω/U , <U) ≥ b.

• In B∗, cofinalities of all points are same, we have
b = ℵ1.
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Definition of (anti-)localization cardinals

Let c , h ∈ ωω. We define∏
c =

∏
i∈ω

c(i)

S(c , h) =
∏
i∈ω

[c(i)]≤h(i)
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Definition of (anti-)localization cardinals

For c , h ∈ ωω, define

c∀c,h = min{|S | : S ⊆ S(c , h), (∀x ∈
∏

c)(∃φ ∈ S)(∀∞n)(x(n) ∈ φ(n))}

c∃c,h = min{|S | : S ⊆ S(c , h), (∀x ∈
∏

c)(∃φ ∈ S)(∃∞n)(x(n) ∈ φ(n))}

v∀c,h = min{|X | : X ⊆
∏

c , (∀φ ∈ S(c , h))(∃x ∈ X )(∃∞n)(x(n) 6∈ φ(n))}

v∃c,h = min{|X | : X ⊆
∏

c , (∀φ ∈ S(c, h))(∃x ∈ X )(∀∞n)(x(n) 6∈ φ(n))}
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Definition of (anti-)localization cardinals

Put
v∀ = min{v∀c,h : c , h ∈ ωω, lim

i→∞
h(i) = ∞}.

and put

c∃ = min{c∃c,h : c , h ∈ ωω,
∑
i∈ω

h(i)/c(i) < ∞}.

Fact from Klausner–Mej́ıa [KM19]

cov(N ) ≤ c∃ and v∀ ≤ c∃.
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Shelah’s result and our improvement

In [She92], Shelah proved KT(ℵ0) implies v∀ ≤ d. We showed
that KT(ℵ0) implies c∃ ≤ d. This is an improvement of
Shelah’s result because of Fact in the previous page.

Since cov(N ) ≤ c∃, in the random model, c∃ = c while d = ℵ1.
Thus in the model ¬(c∃ ≤ d) holds. So the consistency of
¬KT(ℵ0) can be obtained by the random model.
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Review of Shelah’s construction of models

Define a language L by L = {E ,U ,V }, where E is a binary
predicate and U ,V are unary predicates. We say an
L-structure M = (|M |,EM ,UM ,VM) is a bipartite graph if
the following conditions hold:

1 UM ∪ VM = |M |,
2 UM ∩ VM = ∅,

3 (∀x , y ∈ |M |)(x EM y → (x ∈ UM ∧ y ∈ VM)).
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Review of Shelah’s construction of models

For n, k ∈ ω, define a bipartite graph ∆n,k as follows:

1 U∆n,k = {1, 2, . . . , n}
2 V∆n,k = [{1, 2, . . . , n}]≤k ∖ {∅}
3 For u ∈ U∆n,k , v ∈ V∆n,k , u E∆n,k v iff u ∈ v .

For n ∈ ω, Let Gn = ∆n2+1,n. Let Γ be the bipartite graph
obtained by taking the disjoint union of 〈Gn : n ≥ 1〉.

We can define a natural order on Γ by x ◁ y if m < n for
x ∈ Gm, y ∈ Gn. Then Γ is a bipartite graph with an order ◁.
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Review of Shelah’s construction of models

Put L′ = L ∪ {◁}. We consider L′-structures which are
elementarily equivalent to Γ.

Let ΓNS be a countable proper elementary extension of Γ.
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Review of Shelah’s construction of models

When we say connected components, we mean the connected
components when we ignore the orientation of the edges.

Lemma
Let A be an L′-structure that is elementarily equivalent to Γ.
Then the connected components of A are precisely the
maximal antichains of A with respect to ◁.

∵ Two connected vertexes in Γ have path of length at most 4.

Then ◁ induces an order into the connected components of A
and it is denoted also by ◁.
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Review of Shelah’s construction of models

Suppose that d < v∀. Then Γ and ΓNS witness ¬KT(ℵ0). In
fact, for any ultrafilters p, q over ω, the following statements
hold.
In (ΓNS)

ω/q, it holds that

there are cofinally many connected components C such that:

(∃〈ui : i < d〉 with each ui ∈ C ∩ U)

(∀v ∈ C ∩ V )(∃i < d)(ui 6E v).

In Γω/p, it holds that for every κ < v∀,

for every connected component C in a final segment:

(∀〈ui : i < κ〉 with each ui ∈ C ∩ U)

(∃v ∈ C ∩ V )(∀i < κ)(ui E v).

Puting κ = d gives Γω/p 6' (ΓNS)
ω/q.
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Our Modification

Suppose that d < c∃. Modify the definition of Γ by replacing
〈∆n2+1,n : n ≥ 1〉 with 〈∆n3,n : n ≥ 1〉. Then Γ and ΓNS

witness ¬KT(ℵ0). In fact, for any ultrafilters p, q over ω, the
following statements hold.
In (ΓNS)

ω/q, it holds that

there are cofinally many connected components C s.t.:

(∃〈vi : i < d〉 with each vi ∈ C ∩ V )

(∀u ∈ C ∩ U)(∃i < d)(u E vi ).

In Γω/p, it holds that for every κ < c∃,

for every connected component C in a final segment:

(∀〈vi : i < κ〉 with each vi ∈ C ∩ V )

(∃u ∈ C ∩ U)(∀i < κ)(u 6E vi ).

Puting κ = d gives Γω/p 6' (ΓNS)
ω/q.
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SAT(ℵ0) implies cov(M) = c and 2<c = c

Review of the definiton of SAT

We say SAT(κ) holds if there exists an ultrafilter U over ω
such that for every language L and every sequence of
L-structures (Ai)i∈ω with each Ai of size ≤ κ,

∏
i∈ω Ai/U is

finite or c-saturated.

In the preprint, we also showed the converse:
cov(M) = c ∧ 2<c = c implies SAT(ℵ0), But in this talk we
don’t deal with it.
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SAT(ℵ0) implies cov(M) = c

We use the following lemma which characterizes cov(M).

Lemma (Bartoszyński)

cov(M) = c ⇐⇒ (∀X ⊆ ωω of size < c)(∃S ∈
∏
i∈ω

[ω]≤i)

(∀x ∈ X )(∃∞n)(x(n) ∈ S(n))
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SAT(ℵ0) implies cov(M) = c

• Take an ultrafilter U that witnesses SAT(ℵ0).

• Fix X ⊆ ωω of size < c.

• Define a language L by L = {⊆} and define each
L-structure Ai by Ai = ([ω]≤i ,⊆).

• For each x ∈ ωω, let Sx = ({x(i)} : i ∈ ω).

• In the ultraproduct A∗ =
∏

i∈ω Ai/U , consider a set of
formulas with one free variable S defined by

p = {[Sx ] ⊆ S : x ∈ X}.
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SAT(ℵ0) implies cov(M) = c

• This p is finitely satisfiable and the number of parameters
that occur in p is < c.

• In order to check finitely satisfiability, take finitely many
reals x0, . . . , xm. Then a slalom S defined by
S(n) = {x0(n), . . . , xm(n)} for n ≥ m covers x0, . . . , xm.

• Therefore by SAT(ℵ0), we can take [S ] ∈ A∗ that realizes
p.

• This S satisfies (∀x ∈ X )({n ∈ ω : x(n) ∈ S(n)} ∈ U),
so (∀x ∈ X )(∃∞n)(x(n) ∈ S(n))
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SAT(ℵ0) implies 2
<c = c

Take an ultrafilter U over ω that witnesses SAT(ℵ0). Fix
κ < c.
Put L = {⊆} and define an L-structure A by A = ([ω]<ω,⊆).
Put A∗ = Aω/U .
Define a map ι : ωω/U → A∗ by ι([x ]) = [〈{x(n)} : n ∈ ω〉].
By SAT(ℵ0), |ωω/U | = c. Take a subset F of ωω/U of size κ.
For each X ⊆ F , let pX be a set of formulas with a free
variable z defined by

pX = {ι(y) ⊆ z : y ∈ X} ∪ {ι(y) 6⊆ z : y ∈ F ∖ X}

Each pX is finitely satisfiable.
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SAT(ℵ0) implies 2
<c = c

pX = {ι(y) ⊆ z : y ∈ X} ∪ {ι(y) 6⊆ z : y ∈ F ∖ X}.

Claim: Each pX is finitely satisfiable.

∵ Take [x0], . . . , [xn] ∈ X and [y0], . . . , [ym] ∈ F ∖ X . Put
z(i) = {x0(i), . . . , xn(i)}. Then ι([x0]), . . . , ι([xn]) ⊆U [z ]. In
order to prove ι([yj ]) 6⊆U [z ] for each j ≤ m, suppose that
{i ∈ ω : yj(i) ∈ z(i)} ∈ U . Then for each i ∈ ω, there is a
ki ≤ n such that {i ∈ ω : yj(i) = xki (i)} ∈ U . Then there is a
k ≤ n such that {i ∈ ω : yj(i) = xk(i)} ∈ U . This implies
[yj ] = [xk ]. Contradiction! //
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SAT(ℵ0) implies 2
<c = c

By SAT(ℵ0), for each X ⊆ F , take [zX ] ∈ A∗ that realizes pX .
For X ,Y ⊆ F with X 6= Y , we have [zX ] 6= [zY ]. So
2κ = |{[zX ] : X ⊆ F}| ≤ |A∗| = c. Therefore we have proved
2<c = c.
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Open questions

CH

SAT(c)

KT(c)

SAT(ℵ1)

KT(ℵ1)

SAT(ℵ0)

KT(ℵ0)

MA

b = ℵ1 cov(N ) ≤ d

cov(M) = c ∧ 2<c = c

cov(M) = c
cov(M) = c
∧ cf(c) = ℵ1

1 Can CH and SAT(ℵ1) be
separated?

2 Does KT(ℵ1) imply a
stronger hypothesis than
b = ℵ1? Especially does
KT(ℵ1) imply
non(M) = ℵ1?

3 Does KT(ℵ1) imply a
hypothesis that some
cardinal invariant is large?

4 Can KT(ℵ0) and
cov(M) = c be separated?
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cov(M) = c ∧ 2<c = c implies SAT(ℵ0)

Note that 2<c = c<c. So 2<c = c implies c is regular.
This proof is based on Elluntuck–Rucker.

Let 〈bα : α < c〉 be an enumeration of ωω. Let
〈(Lξ,Bξ,∆ξ) : ξ < c〉 be an enumeration of triples (L,B,∆)
such that L is a countable language, B = 〈Ai : i ∈ ω〉 is a
sequence of L-structures with universe ω and ∆ is a subset of
Fml(L+) with |∆| < c. Here L+ = L ∪ {cα : α < c} where the
cα’s are new constant symbols and Fml(L+) is the set of all L+

formulas with one free variable. Here we used the assumption
c<c = c. And ensure each (L,B,∆) occurs cofinally in this
sequence.
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cov(M) = c ∧ 2<c = c implies SAT(ℵ0)

For Bξ = 〈Aξ
i : i ∈ ω〉, put Bξ(i) = (Aξ

i , b0(i), b1(i), . . . ),
which is a L+-structure.
Let 〈Xξ : ξ < c〉 be an enumeration of P(ω).
We construct a sequence 〈Fξ : ξ < c〉 of filters inductively so
that the following properties hold:

1 F0 is the filter consisting of all cofinite subsets of ω.

2 Fξ ⊆ Fξ+1 and Fξ =
∪

α<ξ Fα for ξ limit.

3 Xξ ∈ Fξ+1 or ω ∖ Xξ ∈ Fξ+1.

4 Fξ is generated by < c members.

5 If

for all Γ ⊆ ∆ξ finite, {i ∈ ω : Γ is satisfiable in Bξ(i)} ∈ Fξ,
(∗)

then there is a f ∈ ωω such that for all φ ∈ ∆ξ,
{i ∈ ω : f (i) satisfies φ in Bξ(i)} ∈ Fξ+1.
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cov(M) = c ∧ 2<c = c implies SAT(ℵ0)

Suppose we have constructed Fξ. We construct Fξ+1. Let F
′
ξ be a

generating subset of Fξ with |F ′
ξ| < c. If (∗) is false, let Fξ+1 be

the filter generated by F ′
ξ ∪ {Xξ} or F ′

ξ ∪ {ω ∖ Xξ}. Suppose (∗).
Put P = Fn(ω, ω). For n ∈ ω, put

Dn = {p ∈ P : n ∈ dom p}.

For A ∈ F ′
ξ and φ1, . . . , φn ∈ ∆ξ, put

EA,φ1,...,φn = {p ∈ P : (∃k ∈ dom p ∩ A)

(p(k) satisfies φ1, . . . , φn in Bξ(i))}.

By (∗), each Dn and each EA,φ1,...,φn is dense. By using

MA(Cohen), take a generic filter G ⊆ P with respect to above

dense sets. Put f =
∪
G . Then F ′′

ξ := F ′
ξ ∪ {Yφ : φ ∈ ∆ξ}

satisfies finite intersection property, where

Yφ = {i ∈ ω : f (i) satisfies φ in Bξ(i)}. Let Fξ+1 be the filter

generated by F ′′
ξ ∪ {Xξ} or F ′′

ξ ∪ {ω ∖ Xξ}.
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cov(M) = c ∧ 2<c = c implies SAT(ℵ0)

We have constructed 〈Fξ : ξ < c〉. The resulting ultrafilter
F =

∪
ξ<c Fξ witnesses SAT.
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Our Modification

Suppose that d < c∃. Modify the definition of Γ by replacing
〈∆n2+1,n : n ≥ 1〉 with 〈∆n3,n : n ≥ 1〉. Then Γ and ΓNS

witness ¬KT(ℵ0). In fact, for any ultrafilters p, q over ω, the
following statements hold.
In (ΓNS)

ω/q, it holds that

there are cofinally many connected components C s.t.:

(∃〈vi : i < d〉 with each vi ∈ C ∩ V )

(∀u ∈ C ∩ U)(∃i < d)(u E vi ).

In Γω/p, it holds that for every κ < c∃,

for every connected component C in a final segment:

(∀〈vi : i < κ〉 with each vi ∈ C ∩ V )

(∃u ∈ C ∩ U)(∀i < κ)(u 6E vi ).

Puting κ = d gives Γω/p 6' (ΓNS)
ω/q.
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Modified proof: (ΓNS)
ω/q side

In (ΓNS)
ω/q, it holds that

there are cofinally many connected components C such that:

(∃〈vi : i < d〉 with each vi ∈ C ∩ V )

(∀u ∈ C ∩ U)(∃i < d)(u E vi).

First, observe that every infinite connected component C of
ΓNS satisfies the following:

(∀F ⊆ C∩U finite)(∃v ∈ C∩V )(each point in F has an edge to v).
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Modified proof: (ΓNS)
ω/q side

Claim
Let 〈∆n : n ∈ ω〉 be a sequence of bipartite graphs with
|U∆n | = |V∆n | = ℵ0. Suppose that for each n ∈ ω,

(∀F ⊆ U∆n finite)(∃v ∈ V∆n)(v has an edge to each point in F ).

Then for every ultraproduct R :=
∏

n∈ω ∆n/q, we have

(∃〈vi : i < d〉 with each vi ∈ V R)(∀u ∈ UR)(∃i < d)(u ER vi ).

∵ We may assume that each U∆n = ω. Let {fi : i < d} be a cofinal
subset of (ωω, <∗). For each n,m ∈ ω, take vn,m ∈ V∆n that is
connected with first m points in U∆n . For i < d, put

vi = [〈vn,fi (n) : n ∈ ω〉].

Let [u] ∈ UR . Consider u as an element of ωω. Take fi that dominates u.
Then we have

{n ∈ ω : u E∆n vn,fi (n)} ∈ q.

Therefore [u] ER vi . // 47 / 40



Modified proof: (ΓNS)
ω/q side

Claim (showed in the previous page)

Let ⟨∆n : n ∈ ω⟩ be a sequence of bipartite graphs with |U∆n | = |V∆n | = ℵ0.
Suppose that for each n ∈ ω,

(∀F ⊆ U∆n finite)(∃v ∈ V∆n )(v has an edge to each point in F ).

Then for every ultraproduct R :=
∏

n∈ω ∆n/q, we have

(∃⟨vi : i < d⟩ with each vi ∈ V R)(∀u ∈ UR)(∃i < d)(u ER vi ).

In (ΓNS)
ω/q, it holds that

there are cofinally many connected components C such that:

(∃〈vi : i < d〉 with each vi ∈ C ∩ V )

(∀u ∈ C ∩ U)(∃i < d)(u E vi).

This statement follows from the first observation and Claim.
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Modified proof: Γω/p side

In Γω/p, it holds that for every κ < c∃,

for every connected component C in a final segment:

(∀〈vi : i < κ〉 with each vi ∈ C ∩ V )

(∃u ∈ C ∩ U)(∀i < κ)(u 6E vi).

Put P = Γω/p. Let f : ω → Γ satisfy f (n) ∈ Gn for all n. Let
C0 be the connected component that [f ] belongs to. Take a
connected component C such that C0 ◁ C and an element
g ∈ C . Take a function h : ω → ω such that
{n ∈ ω : g(n) ∈ Gh(n)} ∈ q. Then
A := {n ∈ ω : h(n) ≥ n} ∈ q. Put h′(n) = max{h(n), n}.
Take 〈[vi ] : i < κ〉 with each [vi ] ∈ C ∩ V P . Then

Bi := {n ∈ ω : vi(n) ∈ Gh(n) ∩ V Γ} ∈ q.
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Modified proof: Γω/p side

In Γω/p, it holds that for every κ < c∃,

for every connected component C in a final segment:

(∀〈vi : i < κ〉 with each vi ∈ C ∩ V )

(∃u ∈ C ∩ U)(∀i < κ)(u 6E vi).

Take v ′
i such that v ′

i (n) = vi(n) for n ∈ Ai and
v ′
i (n) ∈ [h′(n)3]≤h′(n) for n ∈ ω. The assumption κ < c∃ and
the calculation∑

n≥1

h′(n)

h′(n)3
=

∑
n≥1

1

h′(n)2
≤

∑
n≥1

1

n2
< ∞

give a x ∈
∏

h′ such that for all i < κ, (∀∞n)(x(n) 6∈ v ′
i (n)).

For each i < κ, take ni such that (∀n ≥ ni)(x(n) 6∈ v ′
i (n)).
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Modified proof: Γω/p side

In Γω/p, it holds that for every κ < c∃,

for every connected component C in a final segment:

(∀〈vi : i < κ〉 with each vi ∈ C ∩ V )

(∃u ∈ C ∩ U)(∀i < κ)(u 6E vi).

Take a point [u] ∈ UP such that u(n) = x(n) for all n ∈ A.
Then for all i < κ we have

{n ∈ ω : u(n) 6E Γ vi(n)} ⊇ A ∩ Bi ∩ [ni , ω) ∈ q.

Therefore [u] 6EP [vi ] for all i < κ.

So we have that KT(ℵ0) implies c∃ ≤ d.
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